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ABSTRACT
We detail an algorithm that — for all but a

1

Ω (log(𝑑𝐻 )) fraction of 𝑓 ∈
Z[𝑥] with exactly 3 monomial terms, degree 𝑑 , and all coefficients

in {−𝐻, . . . , 𝐻 } — produces an approximate root (in the sense of

Smale) for each real root of 𝑓 in deterministic time log
4+𝑜 (1) (𝑑𝐻 ) in

the classical Turing model. (Each approximate root is a rational with

logarithmic height 𝑂 (log(𝑑𝐻 )).) The best previous deterministic

bit complexity bounds were exponential in log𝑑 . We then relate

this to Koiran’s Trinomial Sign Problem (2017): Decide the sign

of a degree 𝑑 trinomial 𝑓 ∈Z[𝑥] with coefficients in {−𝐻, . . . , 𝐻 },
at a point 𝑟 ∈ Q of logarithmic height log𝐻 , in (deterministic)

time log
𝑂 (1) (𝑑𝐻 ). We show that Koiran’s Trinomial Sign Problem

admits a positive solution, at least for a fraction 1 − 1

Ω (log(𝑑𝐻 )) of
the inputs (𝑓 , 𝑟 ).
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1 INTRODUCTION
The applications of solving systems of real polynomial equations

permeate all of non-linear optimization, as well as numerous prob-

lems in engineering. As such, it is important to find the best possible

speed-ups for real-solving. Furthermore, structured systems — such

as those with a fixed number of monomial terms or invariance

with respect to a group action — arise naturally in many computa-

tional geometric applications, and their computational complexity

is closely related to a deeper understanding of circuit complexity

(see, e.g., [15]). So if we are to fully understand the complexity of

solving sparse polynomial systems over the real numbers, then we

should at least be able to settle the univariate case, e.g., classify

when it is possible to separate and approximate roots in determin-

istic time polynomial in the input size. Independent of a complete
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classification, the underlying analytic estimates should give us a

more fine-grained understanding of how randomization helps speed

up real-solving for more general sparse polynomial equations.

Recall that for any function 𝑔 analytic on R, the corresponding

Newton endomorphism is 𝑁𝑔 (𝑧) := 𝑧 − 𝑔 (𝑧)
𝑔′ (𝑧) , and the corresponding

sequence ofNewton iterates of a 𝑧0 ∈R is the sequence (𝑧𝑖 )∞𝑖=0
where

𝑧𝑖+1 := 𝑁𝑔 (𝑧𝑖 ) for all 𝑖 ≥ 0. Given a trinomial 𝑓 (𝑥) := 𝑐1 + 𝑐2𝑥
𝑎2 +

𝑐3𝑥
𝑎3 ∈Z[𝑥] with 𝑎2 <𝑎3=:𝑑 and all 𝑐𝑖 ∈ {−𝐻, . . . ,−1, 1, . . . , 𝐻 }, we

call 𝑓 ill-conditioned if and only if��������� 𝑐2

𝑎3

���� ����𝑎3 − 𝑎2

𝑐1

����(𝑎3−𝑎2)/𝑎3

����𝑎2

𝑐3

����𝑎2/𝑎3

− 1

����� < 1

log(𝑑𝐻 ) (1)

and 𝑓 has no degenerate real roots.

We will see soon that Inequality (1) is the same as forcing the

discriminant of 𝑓 to be near 0 in an explicit way. Also, we’ll see how

we can check in time log
2+𝑜 (1) (𝑑𝐻 ) whether 𝑓 is ill-conditioned in

the sense above. A peculiarity to observe that is that approximating

real degenerate roots is also doable efficiently in our framework:

Being “near” degeneracy — not degeneracy itself — is the remaining

problem.

We use #𝑆 for the cardinality of a set 𝑆 .

Theorem 1.1. Following the notation above, assume 𝑓 is not ill-
conditioned. Then we can find, in deterministic time log

4+𝑜 (1) (𝑑𝐻 ),
a set

{
𝑟1

𝑠1

, . . . ,
𝑟𝑚
𝑠𝑚

}
⊂Q of cardinality𝑚=𝑚(𝑓 ) such that:

1. For all 𝑗 we have 𝑟 𝑗 ≠0 =⇒ log |𝑟 𝑗 |, log |𝑠 𝑗 | = 𝑂 (log(𝑑𝐻 )).
2. 𝑧0 :=𝑟 𝑗/𝑠 𝑗 =⇒ 𝑓 has a root 𝜁 𝑗 ∈R with sequence of Newton
iterates (𝑧𝑖+1 :=𝑁𝑓 ′ (𝑧𝑖 ) or 𝑧𝑖+1 :=𝑁𝑓 (𝑧𝑖 ), according as 𝜁 is

degenerate or not) satisfying |𝑧𝑖 − 𝜁 𝑗 | ≤ (1/2)−2
𝑖−1 |𝑧0 − 𝜁 𝑗 |

for all 𝑖 ≥ 1.
3.𝑚=#{𝜁1, . . . , 𝜁𝑚}.

In particular, if the exponents 𝑎2 and 𝑎3 are fixed (and distinct), then
at most a fraction of 1

log(𝑑𝐻 ) +
1

𝐻
of the (𝑐1, 𝑐2, 𝑐3) ∈ {−𝐻, . . . , 𝐻 }3

yield 𝑓 (𝑥)=𝑐1 + 𝑐2𝑥
𝑎2 + 𝑐3𝑥

𝑎3 that are ill-conditioned.

We prove Theorem 1.1 in Section 3, via Algorithm 3.1 there. We will

call the convergence condition on 𝑧0 above being an approximate
root (in the sense of Smale) with associated true root 𝜁 𝑗 . This type of
convergence provides an efficient encoding of an approximation

that can be quickly tuned to any desired accuracy. It is known (e.g.,

already for the special case of solving 𝑥2 =𝑐) that one can not do

much better, with respect to asymptotic arithmetic complexity, than

Newton iteration [9].

Our complexity bound from Theorem 1.1 appears to be new,

and complements earlier work on the arithmetic complexity of

approximating [27, 29] and counting [5, 14] real roots of trinomials.

https://doi.org/???/???
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In particular, Theorem 1.1 nearly settles a question of Koiran from

[14] on the bit complexity of solving trinomial equations over the

reals. One should also observe that the best general bit complexity

bounds for solving real univariate polynomials are super-linear in

𝑑 and work in terms of 𝜀-approximation, thus requiring an extra

parameter depending on root separation (which is not known a

priori): see, e.g., [18, 22].

Remark 1.2. Defining the input size of a univariate polynomial
𝑓 (𝑥) :=

∑𝑡
𝑖=1

𝑐𝑖𝑥
𝑎𝑖 ∈ Z[𝑥] as ∑𝑡

𝑖=1
log(( |𝑐𝑖 | + 2) ( |𝑎𝑖 | + 2)) we see

that Theorem 1.1 implies that one can solve “most” real univariate
trinomial equations in deterministic time polynomial in the input size. ⋄

Remark 1.3. Efficiently solving univariate 𝑡-nomial equations over
R in the sense of Theorem 1.1 is easier for 𝑡 ≤ 2: The case 𝑡 =1 is clearly
trivial (with 0 the only possible root) while the case 𝑡 =2 is implicit in
work on computer arithmetic from the 1970s (see, e.g., [7]). We review
this case in Theorem 2.3 of Section 2.1 below. ⋄

Efficiently counting real roots for trinomials turns out to be equiv-

alent to a special case of Baker’s classic theorem on linear forms in

logarithms [2, 21], and we review this equivalence in Lemma 2.6

below. Our approach to approximating roots (in the sense of Smale)

is to apply A-hypergeometric functions [24] (briefly reviewed in

Section 2.3) and a combination of earlier analytic estimates of Ye

[33], Rojas and Ye [27], and Koiran [14] (see Sections 2.2 and 1.1).

An important question Koiran posed near the end of his paper

[14] is whether one can determine the sign of a trinomial evaluated

at a rational number in (deterministic) time polynomial in the input

size. (Determining the sign of a 𝑡-nomial at an integer turns out
to be doable in deterministic polynomial-time for all 𝑡 [10].) We

obtain a partial positive answer to Koiran’s question, thanks to an

equivalence between solving and sign determination that holds for

trinomials:

Corollary 1.4. Following the notation above, suppose 𝑢, 𝑣 ∈Z with
|𝑢 |, |𝑣 | ≤𝐻 , and 𝑓 is not ill-conditioned. Then we can determine the
sign of 𝑓 (𝑢/𝑣) in time 𝑂 (log

𝑂 (1) (𝑑𝐻 )).

Lemma 1.5. Koiran’s Sign Problem has a positive solution if and
only if finding approximate roots (in the sense of Smale) for trinomials
is doable in deterministic time log

𝑂 (1) (𝑑𝐻 ).

We prove Corollary 1.4 and Lemma 1.5 in Section 4. Our use of A-

hypergeometric series thus provides an alternative to how bisection

is used to start higher-order numerical methods. In particular, our

approach complements another approach to computing signs of

trinomials at rational points of “small” height due to Gorav Jindal

(write-up available at his blog).

1.1 The Root Separation Chasm at Four Terms
Unfortunately, there are obstructions to solving univariate poly-

nomial equations over R in polynomial-time when there are too

manymonomial terms. Indeed, the underlying root spacing changes

dramatically already at 4 terms.

Theorem 1.6. [20, 28, 29] Consider the family of tetranomials

𝑓𝑑 (𝑥) := 𝑥𝑑 − 4
ℎ𝑥2 + 2

ℎ+2𝑥 − 4

with ℎ ∈N, ℎ≥ 3, and 𝑑 ∈
{
4, . . . ,

⌊
𝑒ℎ

⌋}
even. Let 𝐻 :=4

ℎ . Then 𝑓𝑑 has
distinct roots 𝜁1, 𝜁2 ∈R with log |𝜁1 − 𝜁2 |=−Ω(𝑑 log𝐻 ). In particular,
the coefficients of 𝑓𝑑 all lie in Z and have bit-length 𝑂 (log𝐻 ).

While this result goes back to work of Mignotte [20], we point

out that in [28] a more general family of polynomials was derived,

revealing that the same phenomenon of tightly-spaced roots for

tetranomials occurs over all characteristic zero local fields, e.g., the

roots of tetranomials in Q𝑝 (for 𝑝 any prime) can be exponentially

close as a function of the degree. One may conjecture that the

basin of attraction, for Newton’s Method applied to a real root of

a tetranomial, can also be exponentially small, but so far only the

analogous statement over Q𝑝 is proved [28, Rem. 4.1].

Tight spacing of real roots is thus partial evidence against being

able to find approximate roots in the sense of Smale — with “small”

height, as in our main theorem for trinomials — for tetranomials.

Fortunately, for our setting, binomials and trinomials have well-

spaced roots as a function of 𝑑 and 𝐻 :

Theorem 1.7. (See [28, Prop. 2.4] and [14].) If 𝑓 ∈Z[𝑥] is a degree 𝑑
univariate 𝑡-nomial, with coefficients in {−𝐻, . . . , 𝐻 }, then any two
distinct roots 𝜁1, 𝜁2 ∈C satisfy
log |𝜁1 − 𝜁2 |>−[log(𝑑) + 1

𝑑
log𝐻 ] or log |𝜁1 − 𝜁2 |= −𝑂 (log

3 (𝑑𝐻 )),
according as 𝑡 is 2 or 3. ■

One should also recall the following refined bound on the norms

of nonzero roots of trinomials:

Lemma 1.8. Suppose 𝑓 (𝑥) =𝑐1 + 𝑐2𝑥
𝑎2 + 𝑐3𝑥

𝑎3 ∈C[𝑥] \ {0} and
𝑐1𝑐2𝑐3≠0. Then any root 𝜁 ∈C of 𝑓 must also satisfy

1

2
min

{���𝑐1

𝑐2

��� 1

𝑎
2 ,

���𝑐1

𝑐3

��� 1

𝑎
3

}
< |𝜁 |<2 max

{���𝑐2

𝑐3

��� 1

𝑎
3
−𝑎

2 ,

���𝑐1

𝑐3

��� 1

𝑎
3

}
. ■

Such bounds had their genesis in work of Cauchy and Hadamard in

the 19
th

century, and have since been extended to several variables

via tropical geometry: See, e.g., [1, 11].

1.2 Going Beyond Univariate Trinomials
It is curious that the sign of an arbitrary 𝑡-nomial 𝑓 ∈Z[𝑥] with de-

gree𝑑 and coefficients in {−𝐻, . . . , 𝐻 }, at an integer 𝑟 ∈ {−𝐻, . . . , 𝐻 },
can be computed in polynomial-time [10], while the extension to

rational 𝑟 is still an open question. It is conceivable that (but still

unknown if) computing such sign evaluations at rational points

can exhibit a leap in complexity for some family of tetranomials,

akin to Theorem 1.6.

Let us call a polynomial in Z[𝑥1, . . . , 𝑥𝑛] having exactly 𝑡 terms

in its monomial term expansion an 𝑛-variate 𝑡-nomial. It is worth
recalling that merely deciding the existence of roots over R for 𝑛-

variate (𝑛 + 𝑛𝜀 )-nomials (with 𝑛 ∈N and 𝜀 >0 arbitrary) is NP-hard
[5].

However, there is a different way to generalize univariate tri-

nomial equations: They are the 𝑛=1 case of 𝑛 × 𝑛 circuit systems:
Consider a system of equations 𝐹 := (𝑓1, . . . , 𝑓𝑛) ∈Z

[
𝑥±1

1
, . . . , 𝑥±1

𝑛

]
where the exponent vectors of all the 𝑓𝑖 are contained in a set𝐴⊂Z𝑛
of cardinality 𝑛 + 2, with 𝐴 not lying in any affine hyperplane. Such

an𝐴 is called a circuit (the terminology coming from combinatorics,

instead of complexity theory), and such systems have been studied

from the point of view of real solving and fewnomial theory since

2003 (if not earlier): See, e.g., [4, 5, 17, 26]. In particular, it has been
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known at least since [4] that solving such systems over R reduces

mainly to finding the real roots of univariate rational functions of

the form

𝑔(𝑢) :=

𝑛+1∏
𝑖=1

(
𝛾𝑖,1𝑢 + 𝛾𝑖,0

)𝑏𝑖 − 1 (2)

where 𝛾𝑖, 𝑗 ∈ Q and 𝑏𝑖 ∈ Z for all 𝑖, 𝑗 . Given any 𝑢, 𝑣 ∈ Z with

gcd(𝑢, 𝑣)=1, we define the logarithmic height of 𝑢/𝑣 to be ℎ(𝑢/𝑣) :=

max{|𝑢 |, |𝑣 |}. (We also set ℎ(0) :=0.) We pose the following conjec-

ture:

Conjecture 1.9. Following the preceding notation, we can find ap-
proximate roots (in the sense of Smale) for all the real roots of (2),
in time polynomial in log

𝑛 (𝐵𝐻 ), where 𝐵 :=max𝑖 |𝑏𝑖 | and log𝐻 :=

max𝑖, 𝑗 ℎ(𝛾𝑖, 𝑗 ).

Recently, it was shown that one can count the real roots of circuit

systems in deterministic polynomial-time, for any fixed 𝑛 [26]: The

proof reduced to proving the simplification of Conjecture 1.9 where

one only asks for the number of real roots of 𝑔. This provides some

slight evidence for Conjecture 1.9. More to the point, the framework

from [26] reveals that proving Conjecture 1.9 would be the next step

toward polynomial-time real-solving for circuit systems for 𝑛>1.

Such speed-ups are currently known only for binomial systems

so far [23], since real-solving for arbitrary 𝑛 × 𝑛 systems still has

exponential-time worst-case complexity when 𝑛 is fixed (see, e.g.,

[25]).

2 BACKGROUND
2.1 Approximating Logarithms and Roots of

Binomials
Counting real roots for the binomial 𝑐1 + 𝑐2𝑥

𝑑
(with 𝑐1, 𝑐2 ∈Z and

𝑑 ∈N) depends only on the signs of the 𝑐𝑖 and the parity of 𝑑 : From

the Intermediate Value Theorem, it easily follows that the preceding

binomial has real roots if and only if [𝑐1 =0≠𝑐2, 𝑐1𝑐2 < 0, or [𝑑 is

odd and 𝑐2 ≠ 0]]. Also, two nonzero real roots are possible if and

only if [𝑐1𝑐2 <0 and 𝑑 is even]. So we now quickly review the bit

complexity of finding a positive rational approximate root (in the

sense of Smale) for 𝑓 (𝑥) :=𝑐2𝑥
𝑑 − 𝑐1, with 𝑐1, 𝑐2, 𝑑 ∈N. (The case of

negative roots obviously reduces to the case of positive roots by

considering 𝑓 (−𝑥).)
First note that 𝑓 must have a root in the open interval

(
0,max

{
𝑐1

𝑐2

, 1

})
.

So we can check the sign of 𝑓 at the midpoint of this interval and

then reduce to either the left interval

(
0, 1

2
max

{
𝑐1

𝑐2

, 1

})
, or the right

interval

(
1

2
max

{
𝑐1

𝑐2

, 1

}
,max

{
𝑐1

𝑐2

, 1

})
, and proceed recursively, i.e.,

via the ancient technique of bisection. The signs can be computed

efficiently by rapidly approximating 𝑑 log𝑥 + log(𝑐2/𝑐1), and other

expressions of this form, to sufficiently many bits of accuracy.

To see how to do this, we should first observe that logarithms of

rational numbers can be approximated efficiently in the following

sense: Recall that the binary expansion of

⌊
2
ℓ−1−⌊log

2
𝑥⌋𝑥

⌋
forms

the ℓ most significant bits of an 𝑥 ∈ R+. (So knowing the ℓ most

significant bits of 𝑥 means that one knows 𝑥 up to a multiple in the

closed interval

[
(1 + 2

−ℓ )−1, 1 + 2
−ℓ )

]
.)

Theorem 2.1. [3, Sec. 5] Given any positive 𝑥 ∈Q of logarithmic
heightℎ, and ℓ ∈Nwith ℓ ≥ℎ, we can compute

⌊
log

2
max{1, log |𝑥 |}

⌋
,

and the ℓ most significant bits of log𝑥 , in time 𝑂 (ℓ log
2 ℓ). ■

The underlying technique (AGM Iteration) dates back to Gauss and

was refined for computer use in the 1970s by many researchers (see,

e.g., [7, 8, 30]). We note that in the complexity bound above, we are

applying the recent 𝑂 (𝑛 log𝑛) algorithm of Harvey and van der

Hoeven for multiplying two 𝑛-bit integers [13]. Should we use a

more practical (but asymptotically slower) integer multiplication

algorithm then the time can still be kept at 𝑂
(
ℓ1.585

)
or lower.

The next fact we need is that only amoderate amount of accuracy

is needed for Newton Iteration to converge quickly to a 𝑑th root.

Lemma 2.2. [33] Suppose 𝜁𝑑 =𝑐 with 𝑐 ∈R+ and 𝑑 ∈N. Then any
𝑧 ∈R+ satisfying |𝑧 − 𝜁 | ≤ 2𝑐1/𝑑

𝑑−1
is an approximate root of 𝑥𝑑 − 𝑐 with

associated true root 𝜁 . ■

The key to using fast logarithm computation to efficiently extract

approximate 𝑑th roots of rational numbers will then be knowing

how roughly one can approximate the logarithms. An explicit esti-

mate follows from a famous result of Baker, more recently refined

by Matveev:

Baker’s Theorem (over Q). (See [2] and [19, Cor. 2.3].) Suppose
𝛼𝑖 ∈ Q \ {0} and 𝑏𝑖 ∈ Z \ {0} for all 𝑖 ∈ {1, . . . ,𝑚}. Let 𝐵 =

max𝑖 {|𝑏1 |, . . . , |𝑏𝑚 |}, log𝒜𝑖 := max{ℎ(𝛼𝑖 ), | log𝛼𝑖 |, 0.16}, and Λ :=∑𝑚
𝑖=1

𝑏𝑖 log𝛼𝑖 , where we fix any suitable branch of log a priori. Then
Λ≠0 =⇒ log |Λ| > −1.4 ·𝑚4.5

30
𝑚+3 (1 + log𝐵)∏𝑚

𝑖=1
log𝒜𝑖 . ■

Combining Theorem 2.1, Lemma 2.2, and Baker’s Theorem, we

easily obtain the following result:

Theorem 2.3. Suppose 𝑓 ∈Z[𝑥] is a univariate binomial of degree 𝑑
with coefficients in {−𝐻, . . . ,−1, 1, . . . , 𝐻 }. Then, in time log

2+𝑜 (1) (𝑑𝐻 ),
we can count exactly how many real roots 𝑓 has and, for any nonzero
real root 𝜁 of 𝑓 , find a 𝑧0 ∈Q, with 𝜁𝑧0 >0 and bit-length𝑂 (log(𝑑𝐻 )),
that is an approximate root of 𝑓 in the sense of Smale. ■

Theorem 2.3 is most likely known to experts. In particular, an

analogue for the arithmetic complexity of random binomial systems

appears in [23].

We now set the groundwork for extending the preceding theorem

to the trinomial case.

2.2 Discriminants and 𝛼-Theory for Trinomials
There are three obstructions to extending the simple approach to

binomials from last section to trinomials: (1) computing signs of tri-

nomials at rational points is not known to be doable in polynomial-

time, (2) counting roots requires the computation of the sign of a

discriminant, (3) we need explicit estimates on how close a rational

𝑧 must be to a real root 𝜁 before 𝑧 can be used as an approximate

root in the sense of Smale.

Circumventing Obstruction (1) is covered in the next section, so

let us now review how to deal with Obstructions (2) and (3).

First recall the special case of the A-discriminant [12] for trino-
mials:

Definition 2.4. Given any 𝑎2, 𝑎3 ∈ N with gcd(𝑎2, 𝑎3) = 1 and
𝑎2 <𝑎3, we define
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Δ{0,𝑎2,𝑎3 } (𝑐1, 𝑐2, 𝑐3) :=𝑎
𝑎2

2
(𝑎3 − 𝑎2)𝑎3−𝑎2 (−𝑐2)𝑎3 − 𝑎

𝑎3

3
𝑐
𝑎3−𝑎2

1
𝑐
𝑎2

3
,

and abbreviate with Δ(𝑓 ) :=Δ(0,𝑎2,𝑎3) (𝑐1, 𝑐2, 𝑐3) when
𝑓 (𝑥)=𝑐1 + 𝑐2𝑥

𝑎2 + 𝑐3𝑥
𝑎3 . ⋄

Remark 2.5. By dividing out by a suitable monomial, the vanishing
of Δ(𝑓 ) is clearly equivalent to a monomial (with integer exponents)
being 1. Taking logarithms, we then see that we can decide the sign
of any trinomial discriminant as above in time log

2+𝑜 (1) (𝑑𝐻 ), by
combining Baker’s Theorem with the fast logarithm approximation
from Theorem 2.1. Similarly, 𝑓 being ill-conditioned is equivalent

to Δ(𝑓 ) = 𝑂

(
(1 + 1

log(𝑑𝐻 ) )
𝑑
)
, which can also be checked in time

log
2+𝑜 (1) (𝑑𝐻 ) by approximating logarithms. ⋄

Lemma 2.6. Following the notation above, suppose
𝑓 (𝑥)=𝑐1 + 𝑐2𝑥

𝑎2 + 𝑐3𝑥
𝑎3 ∈R[𝑥] with 𝑐1𝑐2𝑐3≠0,

and set sign(𝑓 ) := (sign(𝑐1), sign(𝑐2), sign(𝑐3)) ∈ {±}3. Then 𝑓 has...

(1) no positive roots if and only if [sign(𝑓 ) ∈ {(+, +, +), (−,−,−)}
or [sign(𝑓 ) ∈ {(+,−, +), (−, +,−)} and sign(Δ(𝑓 ))=sign(𝑐2)]].

(2) a unique positive root if and only if
[sign(𝑓 ) ∈ {(−, +, +), (−,−, +), (+,−,−), (+, +,−)] or
[Δ(𝑓 )=0 and sign(𝑓 ) ∈ {(+,−, +), (−, +,−)}]].

(3) exactly two positive roots if and only if [sign(𝑓 ) ∈ {(+,−, +),
(−, +,−)} and sign(Δ(𝑓 ))=− sign(𝑐2)].

(4)

(
−𝑎2𝑐2

𝑎3𝑐3

)
1/(𝑎3−𝑎2)

as a positive degenerate root (with no other
positive root for 𝑓 ) if and only if [Δ(𝑓 ) = 0 and sign(𝑓 ) ∈
{(+,−, +), (−, +,−)}. ■

Lemma 2.6 follows easily from Descartes’ Rule of Signs (see, e.g.,

[31]) and Assertion (4) (see, e.g., [5]). Since deciding the sign of Δ(𝑓 )
is clearly reducible to deciding the sign of a linear combination

of logarithms, Lemma 2.6 combined with Baker’s Theorem thus

enables us to efficiently count the positive roots of trinomials (as

already observed in [5]).

So now we deal with the convergence of Newton’s Method in

the trinomial case.

Definition 2.7. For any analytic function 𝑓 : R −→ R, let 𝛾 (𝑓 , 𝑥) :=

sup

𝑘≥2

���� 𝑓 (𝑘 ) (𝑥)
𝑘!𝑓 ′ (𝑥)

���� 1

𝑘−1

. ⋄

Remark 2.8. It is worth noting that 1/𝛾 (𝑓 , 𝑥0) is a lower bound
for the radius of convergence of the Taylor series of 𝑓 about 𝑥0, so
𝛾 (𝑓 , 𝑥0) is finite whenever 𝑓 ′(𝑥0)≠0 [6, Prop. 6, Pg. 167]. ⋄

A globalized variant, Γ𝑓 , of 𝛾 (𝑓 , 𝑥) will help us quantify how near

𝑧 ∈ R+ must be to a positive root 𝜁 of a trinomial for 𝑧 to be an

approximate root in the sense of Smale with associated true root 𝜁 :

Definition 2.9. Consider 𝑓 (𝑥) = 𝑐1 + 𝑐2𝑥
𝑎2 + 𝑐3𝑥

𝑎3 ∈ R[𝑥] with
0<𝑎2 <𝑎3, 𝑐3 >0> 𝑐2, and 𝑐1≠0. Let 𝑥1 be the unique positive root
of the derivative 𝑓 ′.

(1) If 𝑓 has two positive roots then let 𝑥2 be the unique positive root
of 𝑓 ′′ (or set 𝑥2 :=0 should 𝑓 ′′ not have a positive root). Then

set Γ𝑓 :=max

{
sup

𝑥 ∈(0,𝑥2)
𝑥𝛾 (𝑓 , 𝑥), sup

𝑥 ∈(𝑥2,∞)
(𝑥 − 𝑥1)𝛾 (𝑓 , 𝑥)

}
.

(2) If 𝑐1 <0 then we set Γ𝑓 := sup

𝑥 ∈(0,𝑥2)
𝑥𝛾 (𝑓 , 𝑥). ⋄

Lemma 2.6 tells us that Cases (1) and (2) in our definition above

are indeed disjoint, and Baker’s Theorem (combined with Theorem

2.1) tells us that we can efficiently distinguish Cases (1) and (2).

Later, we will see some simple reductions implying that Cases (1)

and (2) above are really the only cases we need to prove our main

results.

Theorem 2.10. (See [33, Thm. 2] and [27, Thm. 5].) Following the
notation and assumptions of Definition 2.9, set 𝑑 :=𝑎3 and suppose
𝑧, 𝜁 ∈R+ with 𝑓 (𝜁 ) = 0 and 𝑑 ≥ 3. Also let 𝑥2 be the unique positive
root of 𝑓 ′′ (or set 𝑥2 :=0 should 𝑓 ′′ not have a positive root). Then:

(0) −𝑓 is convex on (0, 𝑥2) and 𝑓 is convex on (𝑥2,∞).
(1) If 𝑓 is monotonically decreasing in [𝑧, 𝜁 ], 𝑥2 ∉ [𝑧, 𝜁 ], and

𝜁 ∈
[
𝑧,

(
1 + 1

8Γ𝑓

)
𝑧

]
, then 𝑧 is an approximate root of 𝑓 .

(2) If 𝑓 is monotonically increasing in [𝜁 , 𝑧], 𝑥2 ∉ [𝑥, 𝜁 ], and
𝜁 ∈

[(
1 − 1

8Γ𝑓

)
𝑧, 𝑧

]
, then 𝑧 is an approximate root of 𝑓 .

(3)
𝑑−1

2
≤ Γ𝑓 ≤

(𝑑−1) (𝑑−2)
2

.
In particular, Assertions (1) and (2), combined with Assertion (3),
imply |𝑧 − 𝜁 | ≤ 𝜁

4(𝑑−1) (𝑑−2) . ■

2.3 A-Hypergeometric Functions
Let us now consider the positive roots of 1 − 𝑐𝑥𝑚 + 𝑥𝑛 and

−1 − 𝑐𝑥𝑚 + 𝑥𝑛 as a function of 𝑐 ∈ R, when 0 < 𝑚 < 𝑛 and

gcd(𝑚,𝑛) = 1, from the point of view of A-hypergeometric se-

ries [12]. These series date back to 1757 work of Johann Lambert

for the special case𝑚=1. Many authors have since extended these

series in various directions. Passare and Tsikh’s paper [24] is the

most relevant for our development here. The union of the domains

of convergence of these series will turn out to be C \{𝑟𝑚,𝑛} where
𝑟𝑚,𝑛 := 𝑛

𝑚
𝑚
𝑛 (𝑛−𝑚) 𝑛−𝑚𝑛

: This quantity, easily checked to be strictly

greater than 1, is closely related to the trinomial discriminant via

Δ(±1 − 𝑐𝑥𝑚 + 𝑥𝑛)=0 =⇒ |𝑐 | = 𝑟𝑚,𝑛 .

There will be two series for |𝑐 | > 𝑟𝑚,𝑛 , and one more series for

|𝑐 |<𝑟𝑚,𝑛 , that we will focus on. These two convergence domains

are in fact related to triangulations of the point set {0,𝑚, 𝑛} via
the Archimedean Newton polygon [1, 12], but we will not elaborate

further here on this combinatorial aspect. The reader should be

aware that these series in fact yield all complex roots, upon inserting

suitable roots of unity in the series formulae. So our choices of sign

are targeted toward numerical bounds for positive roots.

|𝑐 |>𝑟𝑚,𝑛 =⇒ finest lower hull

The first series is:

𝑥
low

(𝑐) = 1

𝑐1/𝑚

1 +
∞∑︁
𝑘=1

©­« 1

𝑘𝑚𝑘
·
𝑘−1∏
𝑗=1

1 + 𝑘𝑛 − 𝑗𝑚

𝑗

ª®¬
(

1

𝑐𝑛/𝑚

)𝑘 
(yielding a positive root of 1 − 𝑐𝑥𝑚 + 𝑥𝑛 with norm within a factor

of 2 of 𝑐−1/𝑚
, thanks to Lemma 1.8), while the second is:

𝑥
hi
(𝑐) = 𝑐

1

𝑛−𝑚

1 −
∞∑︁
𝑘=1

©­« 1

𝑘 (𝑛 −𝑚)𝑘
·
𝑘−1∏
𝑗=1

𝑘𝑚 + 𝑗 (𝑛 −𝑚) − 1

𝑗

ª®¬
(

1

𝑐𝑛/(𝑛−𝑚)

)𝑘 
(yielding a positive root of 1−𝑐𝑥𝑚 +𝑥𝑛 with norm within a factor of
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2 of 𝑐1/(𝑛−𝑚)
, thanks to Lemma 1.8, and distinct from the previous

root).

|𝑐 |<𝑟𝑚,𝑛 =⇒ coarsest lower hull

Our final series yields a root of −1− 𝑐𝑥𝑚 +𝑥𝑛 in the interval

(
1

2
, 2

)
,

via Descartes’ Rule of Signs and Lemma 1.8:

𝑥
mid

(𝑐) = 1 +
∞∑︁
𝑘=1

©­« 1

𝑘𝑛𝑘
·
𝑘−1∏
𝑗=1

1 + 𝑘𝑚 − 𝑗𝑛

𝑗

ª®¬ 𝑐𝑘 .
A key fact about theseA-hypergeometric series is that their tails

decay quickly enough for us to use their truncations (sometimes

efficiently) as start points for Newton iteration.

Lemma 2.11. Suppose 𝑓 (𝑥)=𝑐1 +𝑐2𝑥
𝑎2 +𝑐3𝑥

𝑎3 ∈Z[𝑥], with 𝜎 (𝑓 ) ∈
{(−,−, +), (+,−, +)} and all coefficients in {−𝐻, . . . ,−1, 1, . . . , 𝐻 }, is

not ill-conditioned. Set 𝑐 :=

���� 𝑐2

𝑐
(𝑛−𝑚)/𝑛
1

𝑐
𝑚/𝑛
3

����. Also let 𝑥 (ℓ)low
, 𝑥 (ℓ)

hi
, and 𝑥 (ℓ)

mid

denote the truncation of the corresponding series to its ℓ th term. Then
|𝑐1/𝑐3 |1/𝑎3𝑥

(ℓ)
low

(𝑐) (resp. |𝑐1/𝑐3 |1/𝑎3𝑥
(ℓ)
hi

(𝑐), |𝑐1/𝑐3 |1/𝑎3𝑥
(ℓ)
mid

(𝑐)) is an
approximate root of 𝑓 with associated true root |𝑐1/𝑐3 |1/𝑎3𝑥

low
(𝑐)

(resp. |𝑐1/𝑐3 |1/𝑎3𝑥
hi
(𝑐), |𝑐1/𝑐3 |1/𝑎3𝑥

(ℓ)
mid

(𝑐)) if ℓ = 𝑂 (log
2 (𝑑𝐻 )).

Proof: Let𝑚 := 𝑎2 and 𝑛 := 𝑎3. Observe that if we set 𝛼 := |1/𝑐1 |,
𝛽 := |𝑐1/𝑐3 |1/𝑛 , and 𝑔(𝑥) :=𝛼 𝑓 (𝛽𝑥), then 𝑔(𝑥)=±1− 𝑐𝑥𝑚 + 𝑥𝑛 , with
the sign being exactly sign(𝑐1). So we’ll work with 𝑔 henceforth.

Now note that

𝑘−1∏
𝑗=1

1 + 𝑘𝑛 − 𝑗𝑚

𝑗
= exp

©­«
𝑘−1∑︁
𝑗=1

log(1 + 𝑘𝑛 − 𝑗𝑚) − log( 𝑗)ª®¬
≤ exp

(
log(1 + 𝑘𝑛 − 1 ·𝑚) +

∫ 𝑘−1

1

log(1 + 𝑘𝑛 − 𝑗𝑚) − log( 𝑗) 𝑑 𝑗
)

=

(
1 −𝑚 + 𝑘𝑛

1 +𝑚 − 𝑘𝑚 + 𝑘𝑛

) 1+𝑘𝑛
𝑚

(
1 +𝑚 − 𝑘𝑚 + 𝑘𝑛

𝑘 − 1

)𝑘−1

≤
( 𝑛

𝑛 −𝑚

) 1+𝑘𝑛
𝑚 (𝑛 −𝑚)𝑘−1 =

1

𝑛 −𝑚

( 𝑛

𝑛 −𝑚

) 1

𝑚
(
𝑚 𝑟

𝑛
𝑚
𝑚,𝑛

)𝑘
≤ 𝑘

(
𝑚 𝑟

𝑛
𝑚
𝑚,𝑛

)𝑘
.

So

���𝑥low
(𝑐) − 𝑥

(ℓ)
low

(𝑐)
���

=

������ −1

𝑐1/𝑚

∞∑︁
𝑘=ℓ+1

©­« (−1)𝑛𝑘

𝑘𝑚𝑘
·
𝑘−1∏
𝑗=1

1 + 𝑘𝑛 − 𝑗𝑚

𝑗

ª®¬
(

1

𝑐𝑛/𝑚

)𝑘 ������
≤ 1

|𝑐 |1/𝑚
∞∑︁

𝑘=ℓ+1

(
𝑟
𝑛/𝑚
𝑚,𝑛

|𝑐 |𝑛/𝑚

)𝑘
=

1

|𝑐 |1/𝑚
· 1

1 −
(
𝑟𝑚,𝑛/|𝑐 |

) 𝑛
𝑚

·
(
𝑟𝑚,𝑛

|𝑐 |

) 𝑛
𝑚

(ℓ+1)
.

Assume 𝑐 >𝑟𝑚,𝑛 (and recall 𝑟𝑚,𝑛 >1). By Theorem 2.10, when 𝑛≥ 3,

it suffices to find ℓ such that

���𝑥low
(𝑐) − 𝑥

(ℓ)
low

(𝑐)
��� ≤ 𝑥

low
(𝑐)

4(𝑛−1) (𝑛−2) .

When 𝑛=2, we can in fact complete the square, reduce to the bino-

mial case, and then Lemma 2.2 tells us that it suffices to find ℓ such

that

���𝑥low
(𝑐) − 𝑥

(ℓ)
low

(𝑐)
��� ≤ 2𝑥

low
(𝑐). Also, Lemma 1.8 tells us that

𝑥
low

(𝑐) ∈
(

1

2𝑐1/𝑚 , 2

𝑐1/𝑚

)
. In other words, it suffices to enforce���𝑥low

(𝑐) − 𝑥
(ℓ)
low

(𝑐)
��� ≤ 1

8(𝑛−1)2𝑐1/𝑚 , which (thanks to our last tail

bound involving 𝑟𝑚,𝑛/|𝑐 |) is implied by:

(ℓ + 1) log
|𝑐 |

𝑟𝑚,𝑛
≥ 𝑚

𝑛 log(8(𝑛 − 1)2) − 𝑚
𝑛 log

(
1 −

(
𝑟𝑚,𝑛

|𝑐 |

) 𝑛
𝑚

)
.

Since 𝑓 is not ill-conditioned we have
|𝑐 |

𝑟𝑚,𝑛
≥ 1 + 1

log(𝑛𝐻 ) and thus

−𝑚
𝑛

log

(
1 −

(
𝑟𝑚,𝑛

|𝑐 |

) 𝑛
𝑚

)
≤ −𝑚

𝑛
log

©­­«1 − ©­« 1

1 + 1

log(𝑛𝐻 )

ª®¬
𝑛
𝑚 ª®®¬

≤ log

(
1 + 1

log(𝑛𝐻 )

)
− 𝑚

𝑛
log

1

log(𝑛𝐻 )
≤ log(𝑛𝐻 )

Also, log
|𝑐 |

𝑟𝑚,𝑛
≥ log

(
1 + 1

log(𝑛𝐻 )

)
≥ log 2

log(𝑛𝐻 ) by the inequality

log(𝑥) ≥ (log 2) (𝑥 − 1) if 1 ≤ 𝑥 ≤ 2. Therefore, if

ℓ ≥ log(𝑛𝐻 ) [log(8(𝑛 − 1)2) + log(𝑛𝐻 )]
log 2

,

we then have (ℓ + 1) log
|𝑐 |

𝑟𝑚,𝑛
> log(8(𝑛 − 1)2) + log(𝑛𝐻 )

≥ 𝑚

𝑛
log(8(𝑛 − 1)2) − 𝑚

𝑛
log

(
1 −

(
𝑟𝑚,𝑛

|𝑐 |

) 𝑛
𝑚

)
.

The proof for 𝑥
(ℓ)
hi

(𝑐) is similar, just using

𝑘−1∏
𝑗=1

1 + 𝑘𝑛 − 𝑗𝑚

𝑗
≤ 𝑘

(
(𝑛 −𝑚) 𝑟

𝑛
𝑛−𝑚
𝑚,𝑛

)𝑘

and

���𝑥hi
(𝑐) − 𝑥

(ℓ)
hi

(𝑐)
��� ≤ 𝑐

1

𝑛−𝑚

1−(𝑟𝑚,𝑛/ |𝑐 |)
𝑛−𝑚
𝑛

·
(
𝑟𝑚,𝑛

|𝑐 |

) ( 𝑛−𝑚𝑛 ) (ℓ+1)
instead.

The proof for 𝑥
(ℓ)
mid

(𝑐) also follows similarly, assuming

0< |𝑐 |<𝑟𝑚,𝑛 instead, and using

𝑘−1∏
𝑗=1

1 + 𝑘𝑚 − 𝑗𝑛

𝑗
≤ 𝑘

(
𝑛

𝑟𝑚,𝑛

)𝑘

and |𝑥
mid

(𝑐) − 𝑥
mid

| ≤ 1

1−(𝑐/𝑟𝑚,𝑛)
(

𝑐
𝑟𝑚,𝑛

)ℓ+1

instead. ■
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3 SOLVING TRINOMIAL EQUATIONS OVER R

Algorithm 3.1. (Solving Trinomial Equations Over R+R+R+)
Input. 𝑐1, 𝑐2, 𝑐3, 𝑎2, 𝑎3 ∈Z \ {0} with |𝑐𝑖 | ≤𝐻 for all 𝑖 and
1≤𝑎2 <𝑎3=:𝑑 .
Output. 𝑧1, . . . , 𝑧𝑚 ∈Q+ with logarithmic height 𝑂 (log(𝑑𝐻 )) such
that𝑚 (≤ 2) is the number of roots of 𝑓 (𝑥) := 𝑐1 + 𝑐2𝑥

𝑎2 + 𝑐3𝑥
𝑎3 in

R+, 𝑧 𝑗 is an approximate root of 𝑓 with associated true root 𝜁 𝑗 ∈R+
for all 𝑗 , and the 𝜁 𝑗 are pair-wise distinct.
Description.

(0) Let xflip:= 1, 𝑐 :=

���� 𝑐2

𝑐
(𝑎

3
−𝑎

2
)/𝑎

3

1
𝑐
𝑎

2
/𝑎

3

3

����, 𝛽 := |𝑐1/𝑐3 |1/𝑎3 ,

and let 𝑐 ′ ∈Q+ (resp. 𝛽 ′) an approximation to 𝑐 (resp. 𝛽) within
distance 𝑐

96(𝑛−1)2
computed via Theorem 2.3, and

ℓ :=
log(𝑎3𝐻 ) [log(24(𝑎3−1)2)+log(𝑎3𝐻 ) ]

log 2
.

(1) If 𝜎 (𝑓 ) ∈ {(+, +, +), (−,−,−)} then output
“Your 𝑓 has no positive roots.” and STOP.

(2) Replacing 𝑓 (𝑥) by ±𝑓 (𝑥) or ±𝑥𝑎3 𝑓 (1/𝑥) (and setting
xflip:= −1) as necessary, reduce to the special case 𝑐3 >0>𝑐2.

(3) If Δ(𝑓 ) = 0 then, using Theorem 2.3, let 𝑧xflip
1

be a ratio-

nal approximation to
(
−𝑎2𝑐2

𝑎3𝑐3

)
1/(𝑎3−𝑎2)

of logarithmic height
𝑂 (log(𝑑𝐻 )), output “𝑧1 is your only positive
approximate root.” and STOP.

(4) If Δ(𝑓 )<0 then output
“Your trinomial has no positive roots.” and STOP.

(5) If 𝑐1 < 0 then let 𝑧xflip
1

:= 𝛽 ′𝑥 (ℓ)
mid

(𝑐 ′) and output “𝑧1 is
your only positive approximate root.” and STOP.

(6) Let 𝑧xflip
1

:=𝛽 ′𝑥 (ℓ)
low

(𝑐 ′), 𝑧xflip
2

:=𝛽 ′𝑥 (ℓ)
hi

(𝑐 ′), and output “𝑧1

and 𝑧2 are your only positive approximate roots.”
and STOP.

Proof of Theorem 1.1:Wemake one arithmetic reduction first: By

computing 𝛿 :=gcd(𝑎2, 𝑎3) first, replacing (𝑎2, 𝑎3) with (𝑎2, 𝑎3)/𝛿 ,
and solving the resulting trinomial

¯𝑓 , we can solve 𝑓 over R by tak-

ing the 𝛿 th root of all the real roots of ¯𝑓 if 𝛿 is odd. (If 𝛿 is even, then

we only take 𝛿 th roots of the positive roots of
¯𝑓 .) The underlying

computation of 𝛿 th roots is done via rational approximations with

precision
1

96𝐻 (𝑎3−1)2
via Theorem 2.3, possibly at the expense of a

few extra Newton Iterations of neglible cost. The precision guaran-

tees that the resulting approximations are indeed approximate roots

in the sense of Smale for 𝑓 . The computation of gcd(𝑎2, 𝑎3) takes
time 𝑂 (log(𝑑) (log(log𝑑))2) via the Half-GCD Method [32], so this

reduction to the case gcd(𝑎2, 𝑎3)=1 has negligible complexity.

Assuming Algorithm 3.1 is correct and runs within the stated

time bound, our theorem then follows directly by applying Algo-

rithm 3.1 to 𝑓 (𝑥) and 𝑓 (−𝑥). So it suffices to prove correctness, and

analyze the complexity, of Algorithm 3.1.

Correctness: This follows directly from Lemma 2.6, Theorem 2.10,

and Lemma 2.11. In particular, the constants in our algorithm are

chosen so that multiplicative error in the underlying radicals and

evaluations of our series combine so that 𝛽 ′𝑥 (ℓ)
mid

(𝑐 ′), 𝛽 ′𝑥 (ℓ)
low

(𝑐 ′),
and 𝛽 ′𝑥 (ℓ)

hi
(𝑐 ′) are indeed approximate roots in the sense of Smale.

Complexity Analysis: The logarithmic height bounds on our

approximate roots follow directly from construction, and our time

bound follows easily upon observing that the truncated series we

evaluate involve only 𝑂 (log
2 (𝑑𝐻 )) many terms, and each term

is an easily computable rational multiple of the previous one. In

particular, to get𝑂 (log(𝑑𝐻 )) bits of accuracy it suffices to compute

the leading 𝑂 (log(𝑑𝐻 )) bits of each term (with a suitable increase

of the second 𝑂-constant).

Our final assertion on the fraction of trinomials that are ill-

conditioned can be obtained as follows: We want to find the cardi-

nality of the set:{
(𝑐1, 𝑐2, 𝑐3) ∈ {−𝐻, . . . , 𝐻 }3

����� 0<
|𝑐2 |

|𝑐1 |
𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛 𝑟𝑚,𝑛

− 1<
1

log (𝑑𝐻 )

}
.

Fix (𝑐1, 𝑐3) ∈ {−𝐻, . . . , 𝐻 }2
. Then 𝑐2 satisfies

𝑟𝑚,𝑛 |𝑐1 |
𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛 < |𝑐2 | <

(
1 + 1

log (𝑑𝐻 )

)
𝑟𝑚,𝑛 |𝑐1 |

𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛

Since |𝑐2 | is an integer, the number of 𝑐2 satisfying the last inequality

is no more than∑︁
(𝑐1

,𝑐
3)∈{−𝐻,...,𝐻 }2

𝑟𝑚,𝑛 |𝑐1 |
𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛 ≤𝐻

2

⌈
1

log (𝑑𝐻 ) 𝑟𝑚,𝑛 |𝑐1 |
𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛

⌉

≤
∑︁

(𝑐1
,𝑐

3)∈{−𝐻,...,𝐻 }2

𝑟𝑚,𝑛 |𝑐1 |
𝑛−𝑚
𝑛 |𝑐3 |

𝑚
𝑛 ≤𝐻

2

⌈
𝐻

log (𝑑𝐻 )

⌉
≤ 8𝐻3

(
1

log (𝑑𝐻 ) +
1

𝐻

)

where ⌈𝑥⌉ is the smallest integer no less than 𝑥 . Therefore, the

fraction of trinomials that are ill-conditioned is at most
1

log(𝑑𝐻 ) +
1

𝐻
.

4 SIGNS AND SOLVING ARE ROUGHLY
EQUIVALENT FOR TRINOMIALS

In what follows, it clearly suffices to focus on sign evaluation on

R+ and approximation of roots in R+, since we can simply work

with 𝑓 (±𝑥).

Proof of Lemma 1.5: (=⇒) If Koiran’s Trinomial Sign Problem

can be solved in polynomial-time then we simply apply bisection

to solve for all the positive roots of any input trinomial 𝑓 ∈Z[𝑥]
with degree 𝑑 and all coefficients having logarithmic height log𝐻 .

In particular, Lemma 1.8 tells us that the positive roots of 𝑓 lie in

the interval (1/(2𝐻 ), 2𝐻 ), and Lemma 2.6 (combined with Baker’s

Theorem and Theorem 2.1) tells us that we can count exactly how

many positive roots there are in time log
2+𝑜 (1) (𝑑𝐻 ).

If there are no positive roots then we are done.

If there is only one positive root then we start with the interval

[0, 2𝐻 ] and then apply bisection (employing the assumed solution

to Koiran’s Trinomial Sign Problem) until we reach an interval of

width
1

2𝐻 ·4(𝑑−1)2
. Theorem 2.10 (combinedwith a simpler argument

for the case 𝑑 =2 involving completing the square and Theorem 2.3)

then tells us that this is sufficient accuracy to obtain an approximate

root in the sense of Smale. The number of bisection steps is clearly

𝑂 (log(𝑑𝐻 )), so the overall final complexity is log
𝑂 (1) (𝑑𝐻 ) since

we’ve assumed trinomial sign evaluation takes time log
𝑂 (1) (𝑑𝐻 ).

If there are two positive roots then we first approximate the

unique positive critical point𝑤 of 𝑓 via Theorem 2.3 (since it is the

unique root of a binomial with coefficients of logarithmic height

𝑂 (log(𝑑𝐻 ))), to accuracy
1

3·2𝐻 ·4(𝑑−1)2
. This ensures that the inter-

vals (0,𝑤) and (𝑤, 2𝐻 ) each contain a positive root of 𝑓 , thanks to

Theorem 2.10. We then apply bisection (in each interval) as in the
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case of just one positive root, clearly ending in time log
𝑂 (1) (𝑑𝐻 ).

■

(⇐=): Our argument is almost identical to the converse case, except

that we re-organize our work slightly differently. First, we count

the number of positive roots of 𝑓 in time log
2+𝑜 (1) (𝑑𝐻 ), as outlined

in the converse case. Then, we additionally compute the signs of

𝑓 (0) and 𝑓 (+∞) essentially for free by simply evaluation sign(𝑐1)
and sign(𝑐3),

This data will partition R+ into at most 3 open intervals upon

which 𝑓 has constant (nonzero) sign. So to evaluate sign(𝑓 (𝑟 )) at
an 𝑟 ∈Q with logarithmic height log𝐻 ′

, we simply need to check

which interval contains 𝑟 or if 𝑟 is itself a rational root of 𝑓 .
Doing the latter is already known algorithmically, thanks to ear-

lier work of Lenstra: [16] in fact details a polynomial time algorithm

for finding all rational roots of any sparse polynomial (and even

extends to finding all bounded degree factors, over number fields

of bounded degree). In particular, [16] also proves that the logarith-

mic heights of the rational roots of 𝑓 are log
𝑂 (1) (𝑑𝐻 ). So we can

simply compare 𝑟 to the rational roots of 𝑓 (in time log
𝑂 (1) (𝑑𝐻 ))

and output sign(𝑓 (𝑟 ))=0 if 𝑟 matches any such root.

So let us now assume that 𝑟 is not a root of 𝑓 . If we compute

the positive roots of 𝑓 to accuracy
1

3𝐻 ′ , then we can easily decide

which interval contains 𝑟 and immediately compute sign(𝑓 (𝑟 )).
By assumption, finding a set of positive approximate roots respec-

tively converging to each true positive root of 𝑓 is doable in time

log
𝑂 (1) (𝑑𝐻 ). So, to potentially upgrade our approximate roots to

accuracy
1

3𝐻 ′ , we merely apply Newton Iteration: This involves

𝑂 (log log(𝑑𝐻𝐻 ′)) further iterations, and each such iteration in-

volves log(𝑑𝐻 ) arithmetic operations. Since we only need accuracy

1

3𝐻 ′ , we can in fact work with just the 𝑂 (log(𝑑𝐻𝐻 ′)) most signifi-

cant digits of our approximate roots. So we are done. ■

Proof of Corollary 1.4: Our corollary follows easily from the

proof of Lemma 1.5: Just as in the proof of the (⇐=) direction of our

last proof, we first apply [16] to check whether 𝑢/𝑣 is a root of 𝑓 in

time log
𝑂 (1) (𝑑𝐻 ). If so, then we are done (with sign(𝑓 (𝑢/𝑣))=0),

so let us assume 𝑢/𝑣 is not a root of 𝑓 .
From Theorem 1.1, if 𝑓 is not ill-conditioned, then we can find a

set of positive approximate roots respectively converging to each

true positive root of 𝑓 . Furthermore, by construction (by Algorithm

3.1 in particular), each approximate root is within distance
𝜁

4(𝑑−1)2

of a (unique) true positive root 𝜁 . So, as before, we merely need to

refine slightly via Newton iteration until we attain accuracy
1

3𝐻
, to

find which interval (on which 𝑓 has constant sign) 𝑟 lies in. This

additional work takes time log
4+𝑜 (1) (𝑑𝐻 ), so we are done. ■
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